ADvaNCE - Efficient and Scalable Approximate Density-Based Clustering Based on Hashing

نویسندگان

  • Tianrun Li
  • Thomas Heinis
  • Wayne Luk
چکیده

Analysing massive amounts of data and extracting value from it has become key across different disciplines. As the amounts of data grow rapidly, current approaches for data analysis are no longer efficient. This is particularly true for clustering algorithms where distance calculations between pairs of points dominate overall time: the more data points are in the dataset, the bigger the share of time needed for distance calculations. Crucial to the data analysis and clustering process, however, is that it is rarely straightforward: instead, parameters need to be determined and tuned first. Entirely accurate results are thus rarely needed and instead we can sacrifice little precision of the final result to accelerate the computation. In this paper we develop ADvaNCE, a new approach based on approximating DBSCAN. More specifically, we propose two measures to reduce distance calculation overhead and to consequently approximate DBSCAN: (1) locality sensitive hashing to approximate and speed up distance calculations and (2) representative point selection to reduce the number of distance calculations. The experiments show that the resulting clustering algorithm is more scalable than the state-ofthe-art as the datasets become bigger. Compared with the most recent approximation technique for DBSCAN, our approach is in general one order of magnitude faster (at most 30× in our experiments) as the size of the datasets increase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering is Efficient for Approximate Maximum Inner Product Search

Efficient Maximum Inner Product Search (MIPS) is an important task that has a wide applicability in recommendation systems and classification with a large number of classes. Solutions based on locality-sensitive hashing (LSH) as well as tree-based solutions have been investigated in the recent literature, to perform approximate MIPS in sublinear time. In this paper, we compare these to another ...

متن کامل

Target Tracking Based on Virtual Grid in Wireless Sensor Networks

One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...

متن کامل

خوشه‌بندی داده‌ها بر پایه شناسایی کلید

Clustering has been one of the main building blocks in the fields of machine learning and computer vision. Given a pair-wise distance measure, it is challenging to find a proper way to identify a subset of representative exemplars and its associated cluster structures. Recent trend on big data analysis poses a more demanding requirement on new clustering algorithm to be both scalable and accura...

متن کامل

NG-DBSCAN: Scalable Density-Based Clustering for Arbitrary Data

We present NG-DBSCAN, an approximate density-based clustering algorithm that operates on arbitrary data and any symmetric distance measure. The distributed design of our algorithm makes it scalable to very large datasets; its approximate nature makes it fast, yet capable of producing high quality clustering results. We provide a detailed overview of the steps of NG-DBSCAN, together with their a...

متن کامل

Kernel-Based Clustering of Big Data

There has been a rapid increase in the volume of digital data over the recent years. Analysis of this data, popularly known as big data, necessitates highly scalable data analysis techniques. Clustering is an exploratory data analysis tool used to discover the underlying groups and structures in the data. Stateof-the-art scalable clustering algorithms assume “linear separability” of the cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2017